COURSE SYLLABUS OUTLINE

Course Title and Number: Special Topics: Quantitative Ecology (BSC 680) Semester and Year: Fall 2015 Lecture: Wednesday 2:00-3:50, room S-360

Instructor: Name: Dr. Jayme L. Waldron Office: S-378 Office Hours: Monday 9:30-11:00, or by appointment Office Phone: 696-3361 Email: waldron3@marshall.edu

Office Hours: I make every effort to keep scheduled office hours. Please be aware that sometimes there are conflicts with required meetings, and I cannot be present. When possible, I will make announcements on muOnline if I am unable to make scheduled office hours. I strongly encourage you to make an appointment if you need to meet with me.

Course Description: Studies of free-ranging animal populations regularly involve collection of binary data (e.g., presence/absence, or "where?") and/or count data (e.g., how many?). The goal of this course is to introduce students how to design and implement field-based studies of wildlife populations. Specifically, students will learn how to use presence/absence, mark-recapture, and count data to estimate survival probability and occupancy. Furthermore, students will learn how to use count data to derive estimates of abundance. Upon completing this course, students will be able to develop hypotheses about wildlife populations and analyze data sets from field studies.

Credit: 2 hours in biological sciences Prerequisites: Graduate Student

University Policies: By enrolling in this course, you agree to the University Policies listed below. Please read the full text of each policy be going to <u>www.marshall.edu/academic-affairs</u> and clicking on "Marshall University Policies." Or, you can access the policies directly by going to <u>http://www.marshall.edu/academic-affairs/?page_id=802</u>

Academic Dishonesty/ Excused Absence Policy for Undergraduates/ Computing Services Acceptable Use/ Inclement Weather/ Dead Week/ Students with Disabilities/ Academic Forgiveness/ Academic Probation and Suspension/ Academic Rights and Responsibilities of Students/ Affirmative Action/ Sexual Harassment

Text Information:

Required Text:

1) Occupancy Estimation and Modeling (2006) by Mackenzie et al. (Eds.), Elsevier *Additional Study Aids: Extra readings will be assigned.

***Computer Requirements:** Microsoft Word, Excel, SAS, and internet. Students will be required to download free software:

1. program Presence: http://www.mbr-pwrc.usgs.gov/software/presence.html

Desired Learner Outcomes/Objectives:

(1) Understand how to develop hypotheses about wildlife populations.

- (2) Understand and interpret basic summary statistics.
- (3) Learn how to design basic wildlife population studies.
- (4) Acquire skills necessary to estimate survival occupancy probability.

Expected-learning-outcomes-rubric: how learning outcomes will be practiced and assessed.

Student Learning Outcomes	How students will	How student achievement of each outcome will	
	practice each	be assessed	
	outcome		
Understand how to develop	Reading assignments	1) Effective classroom discourse will depend on	
hypotheses about wildlife	Homework	completion of reading assignments. Students	
populations	Exams	must effectively relate reading assignments to	
		lecture and classroom discussions. Students will	
		be assessed based on their ability to use reading	
		material in their homework assignments, and	
		their knowledge of lecture and reading materials	
		on exams.	
		2) I will evaluate homework using criteria outlined	
		handouts.	
Understand and interpret basic	Reading assignments	1) Students will be evaluated based on their	
summary statistics	Lecture	performance (accuracy) on homework	
	Homework	assignments and exams. Homework criteria will	
		be outlined in handouts.	
Learn how to design basic wildlife	Homework	1) I will evaluate the students' ability to complete	
population studies	Lecture	homework assignments correctly and on time.	
	Exams	2) I will evaluate the accuracy of lecture exam	
		questions.	
		3) Students will be assessed based on their	
		willingness to participate (e.g., ask questions and	
		answer questions) in discussions	
Acquire skills necessary to	Homework	1) I will evaluate the students' ability to complete	
estimate survival and	Lecture	homework assignments correctly and on time.	
occupancy probability.	Exams	2) I will evaluate the accuracy of lecture exam	
		questions.	
		3) Students will be assessed based on their	
		willingness to participate (e.g., ask questions and	
		answer questions) in discussions	

Grading Policy: Grading scale will be as follows:

90-100% = A	80-89% = B	70-79% = C	60-69% = D	≤ 59% = F
	Exam 1			25%
	Exam 2			25%
	Final Exam			25%
	Home Work			25%

Home Work

Homework assignments will be assigned during class and given a minimum of one week to complete. When assignments are not turned in on time, a letter grade will be deducted for every day the assignment is late.

Lecture Exams

There will be three take-home exams (including the final exam), and none will be cumulative. Exam dates on the syllabus may change, but exams will be announced at least one week in advance. Exams will include questions from lectures AND reading assignments. Students will be given one week to complete each exam. **All exams are expected to be taken as scheduled**. Make-up exams will not be given without an excuse from the university.

Participation: Attendance is MANDATORY. You will have to sign-in during every class period. Please consult the university policy on excessive absences (see link at beginning of syllabus). You can miss three classes (i.e., 10% of lectures). After the third absence, 3% will be deducted from your final grade for EVERY missed class.

Cell phones/texting: Mobile phones are not permitted in class. You will be dismissed from class if you are caught texting or if your phone rings. You will be given an absence for the day.

Laptops/ipads/notebooks/etc: I recommend that students bring computers to class; however, computers can ONLY be used when I indicate that it is appropriate (e.g., during modeling exercises). Notes must be taken using paper and writing utensils.

Week (Dates)	Торіс	Reading	
Week 1 (Aug 26)	1) Course Introduction		
	2) Data & distributions		
	3) Measures of central tendencies and dispersion		
Week 2 (Sep 2)	1) Hypothesis development		
	2) One and two sample t-tests		
	Note: "W" withdrawal period begins Sep 2		
Week 3 (Sep 9)	1) ANOVA		
	2) Introduction to study design		
Week 4 (Sep 16)	EXAM 1 Hand out		
Week 5 (Sep 23)	1) Introduction to General Linear Models		
	2) Linear regression		
	EXAM 1 Due		
Week 6 (Sep 30)	1) ANCOVA	Engqvist (2005)	
	2) Introduction to Generalized Linear Models		
Week 7 (Oct 7)	1) Logistic Regression		
	2) Poisson and Negative Binomial Regression (counts)		
Week 8 (Oct 14)	EXAM 2 Hand out		
Week 9 (Oct 21)	1) Introduction to Occupancy	Chapters 1 & 2	
	EXAM 2 Due		
Week 10 (Oct 28)	1) Principles of statistical inference	Chapter 3	
	2) Program Presence	Exercises 1-2	
		MacKenzie et al. (2002)	
Week 10 (Nov 4)	1) Single-season, single-species occupancy models	Chapters 4 & 5	
		Exercise 3	
Week 11 (Nov 11)	1) Application & Design	Chapter 6	
		Exercises 4-5, 9	
		Bailey et al. (2004)	
Week 12 (Nov 18)	1) MARK introduction		
Week 13 (Nov 25)	Thanksgiving Break		
Week 14 (Dec 2)	Final Hand out		
FINAL EXAM	Take home exam due Wednesday, Dec 9 at 4:00 PM		

COURSE OUTLINE/DAILY/WEEKLY SCHEDULE: