Marshall University Syllabus

Course Title	Calculus with Analytic Geometry III
Course Number	MTH 231- Section 102-CRN 3044
Semester/Year	Fall 2018
Days/Time	MTWR 2-2:50pm
Location	Harris Hall 236
Instructor	Dr. Michael Otunuga
Website for Past	http://science.marshall.edu/otunuga/
Question	Password: otunuga990
Office	WAEC 3229 (Engineering building)
Office Hours	MTWRF 10-12pm; others by appointment.
	To make an appointment, email in advance when possible.
Phone	(304) 696-3049
E-Mail	otunuga@marshall.edu
Textbook	Calculus, Early Transcendental by Stewart, 8th edition
Sections Covered	12.1-12.6, 13.1-13.4, 14.1-14.8, 15.1-15.4; 15.6-15.9, 16.1-16.5
Course	Vectors, curves, and surfaces in space
Course Description	Vectors, curves, and surfaces in space. Derivatives and integrals of functions of more
	than one variable. A study of the calculus of vector valued functions.
Calculator	TI-83 or higher. Graphing calculators may not be allowed during exam
Prerequisites	MTH 230 with "C" or higher
Outcome & Objectives	Student will learn to calculate and apply limits, to calculate with vectors, to calculate
	partial and total derivatives and to interpret them as rates of change, to calculate
	multiple integrals, line integrals and surface integrals; and to interpret them as
	accumulations and limits of sample sums, to apply integrals to word problems, to
	apply derivatives and integrals to parametric curves, to work with rectangular, polar,
	cylindrical and spherical coordinates.
University Policies	By enrolling in this course, you agree to the University Policies listed below. Please
	read the full text of each policy be going to <u>http://www.marshall.edu/academic-</u>
	affairs/?page_Id=802 for policies regarding Academic Disnonesty, Excused Absence
	Policy, University Computing Services Acceptable Use, Inclement Weather, Dead
	Week, Academic Dismissal, Academic Forgiveness, Academic Probation and
	Social Harassmont, Soo the University Academic Calendar
	(http://www.marshall.edu/calendar/academic/) for course withdrawal dates
Disabled Students	The Disabled Student Services web site is now available. You may visit it at
	http://www.marshall.edu/disabled. Students seeking special accommodations need
	to follow the university policy detailed in this web site.

Course Contents

Vector Geometry:	Vectors, the dot product, the cross product, equations of lines and planes, cylinders, spherical and quadric surfaces, etc.
Vector-Valued Functions:	Vector functions and space curves, derivatives and integrals of vector functions, arc length, speed, and curvature, motion in space, etc.
Differentiation in Several Var:	Functions of several variables, limits and continuity, partial derivatives, tangent planes and linear approximation, the chain rule, gradient and directional derivatives, optimization in several variables, etc.
Multiple Integration:	Double and triple integrals, iterated integrals, cylindrical and spherical coordinates, change of variables, etc.
Line & Surface Integrals:	Vector fields, line integrals, the fundamental theorem of line
	integrals, Green's theorem, curl and divergence, parametric surfaces
	and their areas, surface integrals, Stokes' theorem, etc.

How each student learning outcome will be practiced and assessed in the course

Student Learning Outcomes	How students will practice each	How student achievement
	outcome	will be assessed
Student will learn to calculate and	Students will complete homework,	Students' understanding will
solve problems relating to Vectors, the	classwork, and quizzes to get practice	be evaluated through
dot product, the cross product,	and feedback.	questions on HW, quizzes
equations of lines and planes,		and 3 in-class tests and the
		comprehensive final exam.
Students will be able to calculate	Students will complete homework,	Students' understanding will
partial and total derivatives and to	classwork, and quizzes to get practice	be evaluated through
interpret them as rates of change	and feedback.	questions on HW, quizzes
		and 3 in-class tests and the
		comprehensive final exam.
Students will be able to calculate	Students will complete homework,	Students' understanding will
multiple integrals, line integrals and	classwork, and quizzes to get practice	be evaluated through
surface integrals	and feedback.	questions on HW, quizzes
		and 3 in-class tests and the
		comprehensive final exam.
Students will be able to interpret	Students will complete homework,	Students' understanding will
multiple integrals, line integrals and	classwork, and quizzes to get practice	be evaluated through
surface integrals as accumulations and	and feedback.	questions on HW, quizzes
limits of sample sums, to apply		and 3 in-class tests and the
integrals to word problems		comprehensive final exam.

Students will be able to apply derivatives and integrals to parametric curves,	Students will complete homework, classwork, and quizzes to get practice and feedback.	Students' understanding will be evaluated through questions on HW, quizzes and 3 in-class tests and the comprehensive final exam.
Student will be able to work with rectangular, polar, cylindrical and spherical coordinates.	Students will complete homework, classwork, and quizzes to get practice and feedback.	Students' understanding will be evaluated through questions on HW, quizzes and 3 in-class tests and the comprehensive final exam.

Course Requirements / Due Dates

<u>Attendance</u>: Attendance is required and you must come with your text. Attendance will be taken every class day by sign-insheet. 2 points will be reduced towards attendance grade for every missed class. Having more than 25% absences (university qualified unexcused) may result in a course grade of F! Absences which can be excused include illness, emergencies, or participation in another university activity. Documentation from an outside source must be provided.

<u>Homework</u>: Homework problems are assigned below. Each Section is due the next Monday (or next day) the section is completed.

<u>Quizzes</u>: There will be quizzes given every Wednesday.

<u>Exams</u>: There will be **3** in-class tests during the semester. The date will be announced in class. Make-up exams will only be given in the event of a university-excused absence. Inform me on time.

<u>Final Exam</u>: The final exam will be on **Monday, December 10, 2018 from 12:45-2:45pm**. Please make travel arrangements accordingly. Make-up/early tests will not be available to accommodate individual travel plans.

Grading Policy

Attendance	25pts			
Quizzes	50pts			
Homework	100pts			
Three major exams	300pts			
Final (comprehensive) exam	150pts			
The grading scale A: 90 – 100%, B: 80 – 89, C: 70– 79, D: 60 – 69, F: 0-59				