Marshall University MTH 360 Syllabus

Course Title/Number	MTH 360 Sec 101 (CRN 3088)		
Semester/Year	Fall 2015		
Days/Time	Monday, Wednesday 5:00-6:15 p.m.		
Location	SH 511		
Instructor	Dr. Evelyn Pupplo-Cody		
Office	Morrow Library 106		
Phone	(304) 696-3047		
E-Mail	pupploco@marshall.edu		
Office Hours	M, T, W, R 1:30 – 2:30 and by appointment		
University Policies	versity Policies By enrolling in this course, you agree to the University Policies listed below.		
	Please read the full text of each policy by going to		
	www.marshall.edu/academic-affairs and clicking on "Marshall University		
	Policies." Or, you can access the policies directly by going to		
	www.marshall.edu/academic-affairs/policies/. Academic Dishonesty/Excused		
	Absence Policy for Undergraduates/Computing Services Acceptable		
	Use/Inclement Weather/Dead Week/Students with Disabilities/Academic		
	Forgiveness/Academic Probation and Suspension/Academic Rights and		
	Responsibilities of Students/Affirmative Action/Sexual Harassment		

Course Description: From Catalog

An introductory survey of complex numbers, analytic functions, properties of elementary functions, integrals, series, residues and poles, with a focus on practical applications.

The table below shows the following relationships: How each student learning outcome will be practiced and assessed in the course.

Student Learning Outcomes	How students will practice each outcome in MTH 360	How student achievement of each outcome will be assessed in MTH 360
Students will demonstrate an ability to interpret and utilize complex numbers algebraically, geometrically, and topologically.	Discussions, group work, board work, low-stakes writing, homework Chapter 1 (Mathews & Howell)	Homework, quizzes, and exams.
Students will demonstrate an ability to apply concepts of real variable calculus to the complex variable setting.	Discussions, group work, board work, low-stakes writing, homework Chapters 2, 3, 4, and 7 (Mathews & Howell)	Homework, quizzes, and exams.
Students will apply their knowledge of complex functions to create images of	Discussions, group work, board work, low-stakes writing,	Homework, quizzes, project, and exams.

important sets and interpret complex functions and their applications.	homework Chapters 5 and 6 (Mathews & Howell)	
Students will apply Residue Theory to find real solutions to real integrals using complex integrals.	Discussions, group work, board work, low-stakes writing, homework Chapter 8 (Mathews & Howell)	Homework, quizzes, and exams.

Course Objectives

Explore the properties of the complex number system algebraically, geometrically, and topologically. Learn functions and mappings in the single variable complex setting.

Apply and expand knowledge of real variable calculus to complex variables.

Learn fundamental concepts, such as analyticity, residues, and singularities, which make complex variables a unique branch of mathematics.

Required Texts, Additional Reading, and Other Materials

- Complex Analysis For Mathematics and Engineering, 6th Edition, by John H. Mathews and Russell W. Howell (ISBN 978-1-4496-0445-5)
- Notebook
- Calculator
- Mathematica or similar software that works with complex functions

Course Requirements/Due Dates

Exam 1 on Monday, September 28, 2015	
Exam 2 on Monday, November 2, 2015	
Exam 3 on Monday, December 7, 2015 from 5:00 until 7:00	

Grading Policy

Each examination (two in-class exams and a final exam) will be worth 75% of the semester grade. Homework and/or quizzes will be worth 15% of the semester grade. The Project will be worth 10% of the grade.

90.00 - 100	Α
80.00 - 89.99	В
70.00 – 79.99	С
60.00 - 69.99	D
Below 60.00	F

Attendance Policy

Students are expected to attend each class. Unexcused absences from **three** classes will result in a reduction of one letter grade for the semester; unexcused absences from **four or more** classes will result in an F. To obtain an excused absence, please go to the Dean of Students' Office in the MSC. Students **must** notify the instructor by phone or e-mail **prior to** an exam if they cannot take a scheduled exam. Students must present a serious reason for missing any exam. Makeup exams will be given to students outside of class time at the convenience of the instructor.

Plagiarism Policy

Plagiarism (stealing) will not be tolerated in any way, shape, or form. Students who plagiarize (including sharing files for assignments) will receive a zero for that assignment.

Computers

Students will be required to use Mathematica or similar software that works with complex functions.

Calculators

Students are required to have a graphing calculator during the course.

Course Schedule and Homework

Mathews-Howell Complex Analysis, 6th Edition

MTH 360 Sec 101 Weekly Schedule and Homework

Week	Topic	Reading	Writing
	Course Introduction	pp. 1–10	p10: 1, 2, 3, 5ab, 7
1	Algebra 1	pp. 11–19	p19: 3, 5, 6ab, 7, 9
	Geometry 1	pp. 21–25	p25: 3bd, 6, 7, 17, 22
2	Geometry 2	pp. 27–34	p34: 1abcd, 2b, 4, 5abcd, 9
	Algebra 2	pp. 36–41	p41: 2, 5abd, 7, 9, 11
	Topology	pp. 43–50	p50: 1ab, 3ab, 5b, 9b, 17
3	Functions and Linear Maps	pp. 53–65	p65: 3ab, 7, 8, 9b, 13b
	Power Functions	pp. 67–73	p73: 1c, 3, 6, 7, 9
	Limits and Continuity	pp. 75–82	p82: 1de, 2, 6, 10, 11
4	Review; Branches of Functions	pp. 84–89	p89: 1ab, 2, 4, 6, 8
	Reciprocal Transformation	pp. 90–95	p95: 1, 4, 10, 11, 15
	Differentiable and Analytic Functions	pp. 97–102	p102: 1, 2, 7ab, 11, 13
5	Cauchy-Riemann Equations	pp. 104–114	p114: 1cd, 3, 6, 11ab, 15
	Review	Review	Review
	Exam 1	None	None
6	Harmonic Functions	pp. 116–123	p123: 1, 2, 4, 5ab, 6
	Sequences and Series	pp. 127–135	p135: 1, 5, 7, 12, 17
	Julia and Mandelbrot Sets (Project)	pp. 136–143	p144: 4, 5, 7, 9, 11
7	The Geometric Series	pp. 145–150	p150: 1, 2, 3, 5ab, 12
	Power Series Functions	pp. 151–157	p157: 3abcde, 4, 6, 9, 12
	Review	Review	Review
	Complex Exponential	pp. 159–164	p164: 1, 3, 4ac, 5bd, 12
8	Complex Logarithms	pp. 167–172	p172: 1abef, 3ab, 4, 9, 10
1	Complex Exponents	pp. 174–179	p179: 1ab, 2ab, 3, 7, 8
	Complex Trigonometry	pp. 180–190	p190: 1, 2, 5b, 6ab, 11
9	Complex Integrals	pp. 199–203	p203: 1ab, 2, 3, 4ab, 5
	Complex Integrals	pp. 204–217	p218: 3, 5, 9, 10, 11
	The Cauchy-Goursat Theorem (mechanics)	pp. 220–233	p233: 1, 2, 3, 4, 5
10	Cauchy-Goursat (proofs)	Review	Review
	Fundamental Theorems	pp. 235–239	p239: 3, 5, 7, 11, 17
11	Review	Review	Review
11	Exam 2	None	None
	Cauchy Integral Formulas	pp. 241-245	p245: 1, 3, 5, 13, 15
12	Morera and Liouville	pp. 247–253	p253: 2, 5, 6, 7, 11
12	Uniform Convergence	pp. 255–261	p261: 3, 5, 6, 7, 9
	Taylor Series	pp. 262–269	p270: 1, 4, 5, 7, 9
13	Laurent Series	pp. 273–280	p280: 1, 2, 3, 6, 12
	Singularities, Zeros, and Poles	pp. 282–289	p289: 1ad, 2ad, 3ad, 5, 6
	The Residue Theorem	pp. 297–305	p305: 1ac, 3ac, 4, 5, 7
	Trigonometric Integrals	pp. 308–311	P311:1, 3, 5, 6, 8
14	Improper Integrals	pp. 312–316	p316: 1, 3, 5, 7, 9
	Keview	Review	Review
	Final Exam		