Course Syllabus - Spring 2016

Course Title/Number: Game Development III:AI / IST460 Location: Weisberg Applied Engr Complex 1104 Times: TR, 2:00 pm - 3:15 pm Instructor: Dr. Alice Lin Office: ML 104 Phone: (304) 696-6418 E-Mail: <u>lina@marshall.edu</u>

Office hours: MW 12:30pm - 1:00pm, 3:45pm - 4:15pm, WAEC 1104 T 12:20 pm - 1:50 pm, PH 200 R 12:20 pm - 1:50 pm, ML 104 TR 3:15pm - 3:45pm, WAEC 1104 Other times by appointment

University Policies:

By enrolling in this course, you agree to the University Policies listed below. Please read the full text of each policy by going to www.marshall.edu/academic-affairs and clicking on "Marshall University Policies." Or, you can access the policies directly by going to www.marshall.edu/academic-affairs/policies/. Academic Dishonesty/Excused Absence Policy for Undergraduates/Computing Services Acceptable Use/Inclement Weather/Dead Week/Students with Disabilities/Academic Forgiveness/Academic Probation and Suspension/Academic Rights and Responsibilities of Students/Affirmative Action/Sexual Harassment

Course Description: From Catalog

Advanced concepts of game development with a focus on artificial intelligence. AI techniques covered include A* path finding algorithm, rule-based reasoning, reinforcement learning, neural networks, genetic algorithm, knowledge representation.

Textbook:

There will be no required textbooks for the course. Some material will be posted on blackboard and some will be handed out in class.

Credit:

The course is three (3) credit hours. It includes classroom lectures, in-class exercises, exam and project.

Course student learning	How students will	How student	
outcomes	practice each outcome	achievement of each	
	in this course	outcome will be	
		assessed in this course	
The student will be able to describe	In-class lectures, in-	The quality of student	
the fundamentals of artificial	class examples, in-class	performance on in-class	
intelligence including knowledge	exercises, presentation,	exercises, project and	
representation, reasoning, neural	project and exam	exam	
networks and genetic algorithms.			
The student will be able to analyze	In-class lectures, in-	The quality of student	
problems that can be solved by	class examples, in-class	performance on in-class	
using AI	exercises, presentation,	exercises, project and	
	project and exam	exam	
The student will be able to identify	In-class lectures, in-	The quality of student	
the boundaries of the capabilities of	class examples, in-class	performance on in-class	
current AI systems	exercises, presentation,	exercises, project and	
	project and exam	exam	
The student will have acquired a	In-class lectures, in-	The quality of student	
sufficient understanding of the	class examples, in-class	performance on in-class	
basic concepts and methods of	exercises, presentation,	exercises, project and	
artificial intelligence to make use of	project and exam	exam	
some elementary artificial			
intelligence techniques in the			
design of computer games.			
The student will be able to create	In-class lectures, in-	The quality of student	
code that incorporates elementary	class examples, in-class	performance on in-class	
artificial intelligence into game	exercises, presentation,	exercises, project and	
coding.	project and exam	exam	

Course Student Learning Outcomes and Assessment Measures:

Grading Policy: Project - 20%

Project - 20% In-class exercises - 50% Final Exam - 30%

Final letter grades are determined based on the following grading scale:

90-100% A 80-89% B 70-79% C 60-69% D

Below 60 F

The instructor reserves the right to change these values depending on the overall class performance and/or extenuating circumstances.

Attendance Policy:

Attendance is strongly encouraged. Lecture material will not be reiterated for persons failing to attend a previous session. It is the student's responsibility to meet with instructor to discuss absences due to illness or other reasons. The university attendance policy will apply for excused absences.

Withdrawal Policy:

The University withdrawal policy is followed in this course. The last day to drop an individual course for the Spring Semester is March 18, 2016.

Course Schedule:

Please note this is a *tentative* schedule. The instructor reserves the right to make changes as appropriate based on the progress of the class.

Week	Start date	Topics, Due dates	
1	1/11	Syllabus, Introduction	
2	1/18	Rational Agents	
3	1/25	Reasoning	
4	2/1	Reasoning	
5	2/8	Search	
6	2/15	Search	
7	2/22	AI Technique (Finite State Machines)	
8	3/29	AI Technique (Random and Probability)	
9	3/7	AI Technique (Flocking)	
10	3/14	AI Technique (A* Pathfinding)	
11	3/21	Spring Break, Classes dismissed	
12	3/28	AI Technique (Path Following)	
13	4/4	AI Technique (Steering Behaviors)	
14	4/11	AI Technique	
15	4/18	Present your projects	
16	4/25	Dead Week	
17	5/2	Final Exam (May 5, 12:45-2:45)	