PHY 421 §1 2014 Fall (CRN 3817) Syllabus Modern Physics Laboratory

Course-Section Web Site: www.science.marshall.edu/foltzc/p421_14f.htm

- <u>Class meets:</u> _T_R_ 10:00–11:50 in Science 281, from Aug.25 Dec.05 (+ final Dec.09 @ 12:45) Expect to do lab work in pairs (perhaps some trios) – form a team for each experiment. In addition to _T_R_ 10–12, lab work may be done at other times during the week. All team members should be there (contributing!) whenever that project is being done. Sci.281 is "free" M_W_F 9–1pm and M_W_F 2–6+pm ... see me to unlock it for your team.
- <u>Instructor:</u> Dr. Curt Foltz ; Science 159 ; foltzc@marshall.edu ; (304) 696-2519 office hours: MTW_F 12:30-2:00pm ; M_W_ 3:30-5:30pm ("free" M_W_F 9-12 , 2-3:30)

<u>Catalog Course Description:</u> PHY 421 Modern Physics Laboratory 2 hrs. Laboratory exercises on modern physics topics, encompassing both experiments of historic significance and current applications. To be taken with Physics 320 or equivalent.

- <u>Recommended:</u> Experimentation (Addison-Wesley, 1994) by David C. Baird or try <u>An Introduction to Error Analysis</u> (University Science Books,1996) by John R. Taylor or borrow <u>Advanced LabVIEW Labs</u> (Prentice Hall, 1999) by John Essick ... in Sci.281 perhaps see <u>Data and Error Analysis</u> (Allyn & Bacon 1988) by William Lichten, in Sci.281 industry perspective in <u>Design of Experiments</u> (Elsevier, 2003) by Jiju Anthony detail reference <u>Building Scientific Apparatus</u> (Cambridge, 2009) by John H. Moore
- <u>Overview:</u> PHY 421 is a bridge from the "canned" intro labs, where you were told exactly what to do, toward open-ended exploration that you might do in capstone or grad school. We want you to figure out how to use a device, by inspecting its connections ... then read its documentation to verify. We want you to assemble your own set-up arrangement and see how well it works ... or re-arrange it to get better data. We want <u>you</u> to decide that you need a micrometer to measure a width ... or that you need 2 more hours of data-taking.

For many of these experiments we expect precise & accurate results, so measure carefully. We want you to know how precise you results are; so record measurement uncertainties, to propagate them thru the data analysis. Some uncertainties will be obviously statistical, but you must estimate others. Several labs obtain a value for some fundamental constant – watch for systematic errors that will deflect the value you obtain.

Proceed cautiously, treating the apparatus gently – much of this equipment is expensive, and not easily repaired – and we usually don't have a spare.

Plan to do 8 or 10 experiments during the semester. Some experiments are more difficult than others, some are not difficult but are time-consuming. Expect a glitch to occur in an otherwise straight-forward demonstration, which might cost an entire week.

<u>Grade Components</u>: Lab notebook ... random inspections ... and Lab work ... 20% "contributed talk" 12 minute presentations ... 3 × 10% each = 30% "physics journal" concise Lab reports ... 3 × 10% each = 30% "group meeting" informal presentation ... 2 – 4 (the rest) = 20%

<u>Aperiments to beleet nom.</u> Others might become ava	anable as the sen	lester progr
Speed of light using laser from spinning mirror		2 days
Detecting ether motion by rotating a Michelson Int	erferometer	2 days
Muon detection deep beneath Earth's atmosphere		1 day
Compton scattering of x-rays or gamma-rays meas	uring $E(\theta)$	2 days
X-ray diffraction thru foils and electron diffraction	thru foil	1 day
x-ray Bragg scattering from crystals		2 days
UV-vis photon wavelengths and their photoelectric	c effect	1 day
photon polarizations and their interference		2 days
Electron charge-to-mass ratio (e/m)		1 day
electron charge <i>e</i> , a la Milliken		2 days
blackbody emission spectrum		1 day
electron spin resonance		2 days
Zeeman effect		2 days
Collisional excitation of atomic levels (Franck-Hert	z)	2 days
deuterium atom emission spectrum, difference from	m H	2 days
complicated atom emission and absorption spectru	ım	1 day
X-ray line emission by various materials		2 days
Nuclear alpha and beta shielding, deflection, and d	letection	2 days
nuclear radioactivity and randomness investigation	n	1 day
nuclear half-life investigation		1 day
nuclear magnetic resonance		2 days

Experiments to Select from : Others might become available as the semester progresses

Statements that are valid for ALL Classes at Marshall:

These are printed in your MU catalog – the most recent version is also on-line at www.marshall.edu/academic-affairs/?page_id=802

+ Academic Dishonesty Policy: progress in science is founded on honesty and openness

- no lying, no cheating, no stealing, no copying - zero tolerance!

+ Absence Policy: email me ASAP after any missed class (before visiting Dean of Students); if class-work slides "too far" behind (3 weeks max) before Nov.01, you should withdraw.

+ Incomplete Grade Policy: to receive an "I", you must have completed ³/₄ of the course successfully (passing); course work must be completed within 1 semester (by 2014 May)