Marshall University Syllabus

Course Title	Complex Variables I		
Course Number	MTH 640- Section 201-CRN 3991		
Semester/Year	Spring 2018		
Days/Time	MWF 10-10:50am		
Location	WAEC 3119		
Instructor	Dr. Michael Otunuga		
Office	WAEC 3229 (Engineering building)		
Office Hours	MTWR 11-12pm, 1-2pm others by appointment.		
	To make an appointment, email in advance when possible.		
Phone	(304) 696-3049		
E-Mail	otunuga@marshall.edu		
Textbook	Complex Analysis: A modern First Course in Function Theory by Jerry Muir. ISBN 9781118705223		
Sections Covered	1.2-1.7; 2.1-2.5; 2.7-2.9; 3.1-3.6; 4.1-4.3; 5.1-5.4		
Course	Complex Functions; Analytic Functions; Cauchy's Integral; The Residue Theorem		
Course Description	A study of algebra, topology, and geometry of the complex plane; holomorphic		
	functions; conformal mapping; analytic functions and analytic continuation; complex		
	integration; representation theorems; convergence theorems and related topics		
University Policies	By enrolling in this course, you agree to the University Policies listed below. Please		
-	read the full text of each policy be going to http://www.marshall.edu/academic-		
	affairs/?page_id=802 for policies. See the University Academic Calendar		
	(http://www.marshall.edu/calendar/academic/) for course withdrawal dates.		
Coming late	Students should come on time and stay in the class for entire class. If you are late by		
-	more than 5 minutes, you will be considered to be absent. You will get a grade		
	reduction if you make a total of 10 unexcused absence		

Course Requirements / Due Dates

Homework: Five (5) Homework assignments will be given and collected.

<u>Presentation</u>: Students are required to present some theorems and problems in class.

<u>Tests</u>: There will be 2 exams given in class during the semester.

Final Exam: There will be a two-hour final exam on April 30, 10:15-12:15pm

Student Learning Outcome	How students will practice each outcome in MTH 640	How student achievement of each outcome will be assessed in MTH 640
Students will describe the concept of the algebra, topology, and geometry of the complex plane	Students will complete homework, and give a class presentation.	Students' understanding will be evaluated through presentations and Exams
Students will be able to define and identify analytic functions, compute derivatives, integrals of analytic functions and describe analytic continuation of functions	Students will complete homework, and give a class presentation.	Students' understanding will be evaluated through presentations and Exams
Students will be able to identify the differences between conditions for differentiability and continuity of real and complex functions	Students will complete homework, and give a class presentation.	Students' understanding will be evaluated through presentations and Exams
Students will be able to compute Taylor's and Laurent series of appropriate functions	Students will complete homework, and give a class presentation.	Students' understanding will be evaluated through presentations and Exams
Students will be able to compute singularities, zeros, the integral of appropriate functions using the poles, zeros, residues.	Students will complete homework, and give a class presentation.	Students' understanding will be evaluated through presentations and Exams
Students will be able to write and present orally the theory of complex variables.	Students will complete homework, and give a class presentation.	Students' understanding will be evaluated through presentations and Exams

Grading Policy

Homework (5)	200pts
Presentation	50pts
Two major exams	200pts
Final (comprehensive) exam	150pts

The grading scale **A**: 90 – 100%, **B**: 80 – 89, **C**: 70– 79, **D**: 60 – 69, **F**: 0-59

Tentative Course Schedule:

Week 1: 1.2-1.3	Week 5: 2.3-2.4	Week 9: 3.4, 4.1	Week 13: 5.2
Week 2: 1.4-1.5	Week 6: 2.7-2.8, Test 1	Week 10: 4.2-4.3, Test 2	Week 14: 5.3
Week 3: 1.6-1.7	Week 7: 2.9, 3.1	Week 11: Spring Break	Week 15: 5.4
Week 4: 2.1-2.2	Week 8: 3.2-3.3	Week 12: 5.1	