Marshall University Syllabus

Course Title	Calculus with Analytic Geometry I (CT)
Course Number	MTH 229- Section 202- CRN 4136
Semester/Year	Spring 2017
Days/Time	MTWRF 12:00-12:50pm
Location	SH 513
Instructor	Dr. Michael Otunuga
Office	WAEC 3229
Office Hours	MTWR 1-1:50pm; 4-4:30pm; others by appointment.
	To make an appointment, email in advance when possible.
Phone	304 696-3049
E-Mail	otunuga@marshall.edu
Textbook	Calculus, Early Transcendental, 3rd edition by Jon Rogawski
Core Credits	This course fulfils a Core I: CT requirement (Integrative Thinking; Critical Thinking;
	Communication Fluency; Inquiry Based thinking and Quantitative Thinking and a Core
	II: Math requirement
Prerequisite	ACT Math 27 or SAT Math 610 or MTH 132 "C" or higher
Course Description	A brief but careful review of the main techniques of limits, derivatives and integrals of
	elementary functions of one variable, including transcendental functions. Applications
	of derivatives and integrals. Using graphing calculators and Mathematica to help solve
	problems.
Calculator	TI-83 or higher, graphing calculators may not be allowed for some problems in exam
University Policies	By enrolling in this course, you agree to the University Policies listed below. Please
	read the full text of each policy be going to www.marshall.edu/academic-affairs and
	clicking on "Marshall University Policies." Or, you can access the policies directly by
	going to http://www.marshall.edu/academic-affairs/?page_id=802
	Academic Dishonesty/ Excused Absence Policy for Undergraduates/ Computing
	Services Acceptable Use/ Inclement Weather/ Dead Week/ Students with Disabilities/
	Academic Forgiveness/ Academic Probation and Suspension/ Academic Rights and
	Responsibilities of Students/ Affirmative Action/ Sexual Harassment
	See the <u>University Academic Calendar</u>
	(http://www.marshall.edu/calendar/academic/) for course withdrawal dates.

<u>Description as a Critical Thinking "CT" Course:</u>

Description as a	This course fulfills five of seven Cores I "CT" core domains. Primarily,
Critical Thinking "CT" Course:	it fulfills the core domain of integrative thinking through the use of
	mathematical and abstract thinking techniques of calculus to teach
	students how to construct and evaluate mathematical terms like
	limits, derivatives and integrals symbolically, how to approximate

limits, derivatives and definite integrals from graphical data, and how to apply calculus techniques to find local and global extrema and further analyze the behavior of functions.

Also, it fulfills the core domain of **creative thinking.** Students are able to solve a given problem using various approach and different methods discussed in class. Also, it requires students to be able to write arguments on whether or not the properties in a definitions/argument hold true for given specific mathematical examples.

The course also fulfils the core domain of **communication fluency** by requiring students to be able to develop oral, written and/or visual communication skills in explaining the meaning of limits, derivatives and integrals, to be able to apply these definitions to specific problems and to write arguments on whether or not the properties in these definitions hold true for given specific mathematical examples.

Furthermore, this course fulfills the core domain of **inquiry based thinking** by teaching student how to formulate, derive or model a problem using certain hypothesis. Students will evaluate/study certain problem, analyze the problem with reasonable conclusion.

Lastly, this core fulfills the core domain of **quantitative thinking** by teaching students how to analyze real world problems in science, engineering and other field quantitatively, come up with a model that best describe the problem and investigate validity of the model.

Course Goals:

- An understanding of fundamental concepts of calculus and an appreciation of its applications
- Developing critical thinking skills by applying calculus skills to real world problems
- Obtaining an understanding of the theory in science and engineering mathematics
- Being able use technology to help solve problems.
- Satisfying program requirements for mathematics, science, and engineering majors

How each student learning outcome will be practiced and assessed in the course

MTH 229 Student Learning Outcomes	How students will practice each outcome in MTH 229	How student achievement of each outcome will be assessed in MTH 229
Students will be able to identify and graph standard algebraic functions. (communication fluency)	Students will complete homework, classwork, and quizzes to get practice and feedback.	Students' understanding of functions will be evaluated through questions on 3 inclass tests, 1 project and the comprehensive final exam.
Students will be able to communicate mathematics in writing and orally. (communication fluency)	Students will complete brief, low- stakes writing assignments as part of daily classwork and quizzes. Students will engage in peer review of written and oral explanations of concepts.	Students will be assessed on written communication through questions on 3 inclass tests, 1 project and the comprehensive final exam.
Students will be proficient at finding limits, derivatives and integrals of functions. Students will understand the concept of functions and their applications. (integrative thinking)	Students will complete homework, classwork, and quizzes to get Practice and feedback.	Students will be assessed on solving equations through questions on 3 in-class tests, 1 project and the comprehensive final exam.
Students will be able to develop mathematical model to solve real world problem. (creative, inquiry based and quantitative thinking)	Student will complete assigned mathematical projects.	Students will be assessed on their modeling skills on 1 take home project.
Students will be able to analyze real world problems in science, engineering and other field quantitatively. (quantitative thinking)	Students will complete homework, classwork, and quizzes to get Practice on modeling questions.	Students will be assessed on Model analysis, derivation and verification through questions on 1 project.
Student will be able to interpret symbolic and numerical results to answer real-world questions, and recognize when a result is invalid in the real world. (quantitative thinking)	Students will complete homework, classwork, and quizzes to get Practice on modeling questions.	Students will be assessed on Model applications through questions on 1 project.
Students will be able to select a function to model a physical example and apply calculus techniques to make	Students will complete projects, homework and quizzes to get practice and feedback	Students' understanding of applied calculus will be

Predictions	evaluated through questions
(inquiry based thinking)	on 1 project.

Course Requirements / Due Dates

<u>Attendance</u>: Attendance is compulsory for this class. Coming late to class and leaving class early, playing with cell phone, sleeping in class will be counted as an unexcused absent.

Unexcused absences from **11** classes will result in a reduction of one letter grade for the semester; unexcused absences from **12** or more classes will result in an F

<u>Homework</u>: Homework will be assigned in class every week.

<u>Quizzes</u>: There will be some brief quizzes. Make-up quizzes are only given in the event of a university-excused absence.

<u>Projects:</u> Projects will be given to students. Students are to work in group and give a presentation during the dead week.

<u>Tests</u>: There will be 3 in-class tests during the semester, 1 project and a comprehensive Final Exam. If you know in advance that you will have an excused absence on a test date, please inform me on time and make arrangements to take the test early. Make-up exams will only be given in the event of a university-excused absence.

<u>Final Exam</u>: The final exam will be on **Friday May 5, 2017 from 10:15am-12:15pm**. Please make travel arrangements accordingly. Make-up/early tests will not be available to accommodate individual travel plans.

Grading Policy

Attendance	25 points	
Quizzes	50 points	
Homework	75 points	
Three major exams	300 points	
Project	100 points	
Final (comprehensive) exam	150 points	
The grading scale is rigid.		
90.00 – 100	A	
80.00 – 89.99	В	
70.00 – 79.99	C	
60.00 - 69.99	D	
Below 60.00	F	

Tentative Course Schedule (Depending on class's pace)

Week	Dates	Approximate schedule : Sections covered and topics	Actual
	Spring		Date
	2017		Covered
1	1/9-	1.1 triangle inequality; interval notation; distance formula; equation of circle;	
	1/13	ways to represent a function; finding domain and range of a function	
		vertical line test of whether y is a function of x on a graph	
		increasing and decreasing functions; even and odd functions	
		sketching transformations of graphs: horizontal and vertical shifts,	
		horizontal and vertical scaling	
		1.2 linear functions; point-slope and slope intercept form for lines	
		quadratic functions; quadratic formula; completing the square	
		1.3 polynomial functions; rational functions and how to find their domains	
		exponential functions and logarithmic functions with base a	
		constructing new functions from algebra and composition	
2	1/16-	1.4 right triangle definitions of trig functions: SOH CAH TOA	
	1/20	radians vs. degrees	
		unit circle definitions of cosine and sine and the other trig functions	
	Martin L	graphs of trig functions; basic trig identities	
	King		
	1/16	1.5 one to one function; horizontal line test	
		solving for the inverse function for a 1 to 1 function	
		sketching the graph of an inverse function by reflecting across the line y=x	
		restricting the domain to define inverse for sine, cosine and tangent	
		1.6 logarithmic functions and algebraic properties of logarithms	
		solving exponential and logarithmic equations	
Week	Dates	Approximate schedule : Sections covered and topics	Actual
	Spring		Date
	2017		Covered
3	1/23-	2.1 average vs. instantaneous velocity	
	1/27	average rate of change as slope of a secant line	
		instantaneous rate of change as a limit of average rate of change	
		2.2 demonstrating the concept of a limit: using tables of values to estimate	
		Limits; tables of values can give misleading answers about limits	
		determining a limit by looking at the graph of a function	
		notation for one-sided limits : from right side $\lim_{x\to a^+}f(x)$, and from left side $\lim_{x\to a^-}f(x)$	
		ways a limit can fail to exist: the right hand and left hand limits don't agree	
		the limit is ∞ $or -\infty$;	
		how infinite limits are related to vertical asymptotes ,	
		finding vertical asymptotes	
		2.3 properties of limits	
		rules for limits of polynomial functions, rational functions, and trig functions	
L	_	, , , , , , , , , , , , , , , , , , , ,	

4	1/30-		
	2/3	2.4 definition of continuity at a point: three conditions must be satisfied	_
		using the definition of continuity and properties of limits to show continuity	
		at a given point; identifying on a graph ways a function can have a discontinuity	
		one sided continuity; types of discontinuity points; finding discontinuity points of rational and	
		piecewise functions; classes of continuous functions	
		using laws of continuity to build continuous functions	
		using substitution method for finding limits of continuous functions	_
		2.5 finding limits of piecewise functions where the pieces join limits of functions which agree with another function at all,	
		but possibly one point: cancellation and rationalization techniques for $\frac{0}{0}$ type limits	
		2.6 using Squeeze Theorem and a geometrical argument to prove $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$	
		important limits with trig functions	
Week	<u>Dates</u>	Approximate schedule: Sections covered and topics	Actual
	Spring		Date
	2017		Covered
5	2/6-2/10	2.7 definition of $\lim_{x o \infty} f(x) = L$ and $\lim_{x o -\infty} f(x) = L$	
		how horizontal asymptotes are related to limits at infinity	
		limits at infinity for basic polynomial functions and rational functions	
		techniques for calculating limits at infinity	
		2.8 Intermediate Value Theorem and applications to locating zeros of functions	_
		2.9 formal ε $-\delta$ definition of limit; demonstrating a limit on a graph by finding the value of δ ,	-
		given a specific value of ε ; using the $\varepsilon-\delta$ definition to prove that the limit of a function exists;	
		formal $arepsilon - \mathcal{S}$ definition of right hand and left hand limits	
		Exam 1	
6	2/13-	3.1 slope of tangent line is the limit of slope of secant line	
	2/17	slope of tangent line is the limit of slope of secart line $f(a+b) = f(a)$	
	_, _,	using definition of derivative: $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ to	
		algebraically compute derivatives and to estimate	
		numerical value of derivatives when h is small	
		using derivative to find slope(and equation) of tangent lines	
		3.2 interpreting derivative as a function of x	_
		$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
		Leibniz notation and operator notation for derivatives rules for derivatives:	
		constant rule, power rule, constant multiple rule, sum & difference rules	
		formula for the derivative of natural exponential function e^x	
		differentiability implies continuity; how a function can fail to be differentiable	
		3.3 product rule and quotient rule for derivatives	-
7	2/20-	3.4 applications of derivatives: instantaneous rate of change,	
'	2/20-	instantaneous velocity, marginal cost	
	2/27	3.5 notation for 2 nd and higher order derivatives	-
		5.5 Hotauon for Z Fand nigher order derivatives	

		higher derivatives of polynomials and exponential functions	
		acceleration and jerk	
		3.6 derivatives of sine and cosine	
		derivatives of other trig functions	
Week	Dates Spring 2017	Approximate schedule : Sections covered and topics	Actual Date Covered
8	2/27- 3/3	3.7 Chain Rule power rule combined with chain rule using chain rule with the other rules for derivatives 3.10 & 3.8	
		finding derivatives by Implicit Differentiation using implicit differentiation to compute slope of tangent line at a given point using implicit differentiation to find derivatives of inverse functions, e.g. inverse trig functions	
		3.9 formula for the derivative of general exponential function b^x change of base formula for logarithms	
		formula for the derivative of $\ln x$ and $\log_b x$ definitions of the 6 basic hyperbolic functions how hyperbolic identities compare to trig identities derivatives of hyperbolic functions	
9	3/6-	3.11 applying chain rule to related rates word problems	
	3/10	Exam 2	
		4.1 linearization of a function: using the tangent line to approximate the function computing differentials and using them to approximate errors and	
	2/12	relative error	
11	3/13- 3/17	4.2 recognizing absolute extrema vs. local extrema on a graph Extreme Value Theorem for absolute extrema of any continuous function on closed interval Fermat's Theorem for local extrema definition of a critical point local extrema can only occur at critical numbers, but there are critical numbers which don't have local extrema 3-step method of finding absolute max and min of a function on	
		a closed interval Rolle's Theorem	
		4.3 proving the Mean Value Theorem using Mean Value Theorem to help prove a function has exactly one real root using Mean Value Theorem to prove $f'(x) = 0$ on an interval implies	
		f is constant there using ${f 1}^{ m st}$ derivative sign charts to determine increasing and	

		decreasing behavior 1st Derivative (Sign Chart)Test for local extrema	
		4.4 using 2 nd derivative sign charts to determine concavity and points of inflection the 2 nd Derivative Test for Local Extrema: recognizing when it's inconclusive	-
Week	<u>Dates</u>	Approximate schedule: Sections covered and topics	Actual
	Spring 2017		Date Covered
12	3/27- 3/31	4.5 using L'Hopital's Rule to find limits of $\frac{0}{0}$ and $\frac{\infty}{\infty}$ indeterminate forms	
	3,31	finding limits of products and differences indeterminate forms	
		4.6 using 1 st and 2 nd derivative sign charts to sketch graph of polynomial, rational, and other types of functions	
		graphs which have horizontal, vertical and slant asymptotes	
		4.7 solving max-min word problems justifying that your answer is an absolute extremum: if there is	
		only one local extremum on an interval, then that	
		local extremum is absolute	
13	4/3-	4.8 Newton's Method for approximating zeros of a function	
	4/7	examples where Newton's Method fails	
		4.9 definition of an antiderivative	
		finding the most general antiderivative	
		indefinite integrals and integral notation basic rules for integration: integrals for polynomial and trig functions	
		using initial conditions to find particular solutions to	
		1 st order differential equations	
		5.1 sigma notation for summations some basic formulas for summations, Bernoulli's formula	
		inscribed and circumscribed rectangles	
		left endpoint and right endpoint and midpoint approximations of area beneath curves	
		area beneath earves	
14	4/10- 4/14	5.2 Riemann sums computing definite integral by taking limit of Riemann sums	
	,,	properties of definite integrals , including comparison theorem	
		5.3 using 1st Fundamental Theorem of Calculus to evaluate definite integrals	
		5.4 using 2nd Fundamental Theorem of Calculus to find derivative of definite integrals	
·			·

		with respect to variables in the limits of integration	
		Exam 3	
Week	Dates Spring 2017	Approximate schedule: Sections covered and topics	Actual Date Covered
15	4/17- 4/21	5.5 Net Change Theorem : definite integral of a derivative gives the total change in the function evaluating more definite integrals displacement as the integral of velocity	
	4/24- 4/28	5.6 method of u-substitution for indefinite and definite integrals application to integrating even and odd functions	
		5.7 Defining natural logarithm as integrals indefinite integrals with formulas involving inverse trig functions	
		5.8 law of natural growth and natural decay using exponential growth and decay models to represent population growth and radioactive decay	
		Project	•