PLS (NRRM) 433/533 GIS/Remote Sensing in Natural Resources

Spring 2014, 3 Credits, SEC 201 (CRN 4513, 4873) Wednesday: 4:00 – 6:20 pm Room: Harris Hall 202

Instructor

Min Kook Kim, Ph.D. Office: Prichard Hall 212 E-Mail: kimm@marshall.edu Phone number: 304-696-3748 Fax number: 304-696-6533 Office Hours: T/R: 10:50 – 12:00 pm, W/F: 9:00 – 10:00am, 11:00 – 12:00 pm Other times by appointment

University Policies

By enrolling in this course, you agree to the University Policies listed below. Please read the full text of each policy be going to <u>www.marshall.edu/academic-affairs</u> and clicking on "Marshall University Policies." Or, you can access the policies directly by going to <u>http://www.marshall.edu/academic-affairs/?page_id=802</u>

Academic Dishonesty/ Excused Absence Policy for Undergraduates/ Computing Services Acceptable Use/ Inclement Weather/ Dead Week/ Students with Disabilities/ Academic Forgiveness/ Academic Probation and Suspension/ Academic Rights and Responsibilities of Students/ Affirmative Action/ Sexual Harassment

Required Texts, Additional Reading, and Other Materials

- <u>Course main text:</u> Bolstad, P. (2012). *GIS Fundamentals* (4th Ed.). White Bear Lake, MN: Eider Press (http://www.paulbolstad.net/gisbook.html, TEL: 800-247-6553, ISBN: 978-0-9717647-3-6).
- If you have no previous experience with ArcGIS, you may purchase "Getting to Know ArcGIS Desktop" for your own exercise purpose. Additional reading materials will be assigned by the instructor as needed.

Course Description/Format

The course will explore techniques and procedures required for spatially explicit data analysis in

park and protected area applications. Specifically, for developing problem-solving and analytical skills, Geographic Information Systems (GIS) and Remote Sensing (RS) analysis focusing on natural resources management will be accomplished by each student in a computer laboratory with minimal input from the instructor. Various case studies will be used for analysis purposes in class: trail/site selection, vegetation classification, vegetation change analysis, biodiversity pattern analysis, and mapping/editing via Global Positioning System (GPS).

Pre/co-requisites: Since this course introduces and employs various applied/advanced GIS/RS analysis techniques, previous experience in GIS/RS is recommended (recommended courses: IST 423, GEO 426, or equivalent). However, depending on individual circumstances such as levels of analytical, mathematical and programming skills/abilities, the instructor will allow students to take this course. Therefore, students who didn't take the recommended course must see the instructor for registration.

Course Student Learning Outcomes	How students will practice each outcome in the course	How student achievement of each outcome will be accessed in the course	
Students will understand the	In-class examples/materials,	Two lab reports and five lab	
theory, methods and	discussions, lab exercises	summaries, Student final	
techniques of spatial analysis		project paper/presentation	
using remotely sensed and			
GIS data			
Students will understand basic	In-class examples/materials,	Two lab reports and five lab	
techniques of aerial/satellite	discussions, lab exercises	summaries, Student final	
image processing and how the		project paper/presentation	
data is interpreted and			
integrated into spatial analysis			
for parks and protected areas			
Students will understand the	In-class examples/materials,	Two lab reports and five lab	
advantages and limitations of	discussions, lab exercises	summaries, Student final	
using RS/GIS based analysis		project paper/presentation	
approaches for managing			
parks and protected areas			

Course Student Learning Outcomes and Assessment Measures

Upon completion of this course, student will be able to

Students will plan and conduct	In-class examples/materials,	Student final project	
spatially explicit research or	discussions, lab exercises	paper/presentation	
application using RS and GIS			
techniques for parks and			
protected areas			
Students will write brief but	In-class examples/materials,	Two lab reports and five lab	
concise laboratory report in	discussions, lab exercises	summaries, Student final	
appropriate technical style		project paper	
demonstrating the students'			
understanding and			
interpretation of results			
Students will collect	In-class examples/materials,	Lab 10 - 13, Service learning	
geospatial information using a	discussions, lab exercises,	project with the City of	
hand-held GPS unit and edit	field work/investigation	Huntington	
the collected data using an			
appropriate protocol			

Course Requirements

- Lab Exercise: There will be two lab reports and five lab summary assignments during the semester. The completion of these assignments will require students to work independently in the computer lab on their own time. Generally, students will be given a week to work on the lab summary and two weeks on the lab report. The instructor will provide instructions for the expected content of assignment.
- 2) <u>Final Project Paper/Presentation</u>: The final project serves as the opportunity for students to demonstrate their fulfillment of the course objectives. Students are required to complete an applied GIS/RS analysis project by applying the techniques covered in class. A project may involve posting and testing a research hypothesis related to park and protected area management. The final project topics will require approval by the instructor, and more details schedule will be provided (<u>approximately 3 pages</u> not including tables, figures, or references, *due: April 30*).
- Article Review (Graduate Only): Students will be required to review a research paper assigned by the instructor. The instructor will provide instructions for the expected content of assignment (approximately 2 pages, due: March 12)
- <u>Attendance & Participation</u>: Attendance will be part of your grade as noted below. <u>If</u> <u>student misses more than 30 percent of the lectures, the instructor reserves the right to</u> <u>summarily assign a failing grade for the course</u>. In addition, <u>55 percent</u> of the grade for

this course is comprised of lab exercises, most of which will be completed in class. Student will not be allowed to make-up in class lab exercise missed due to unexcused absences. Absences will only be excused if they have been pre-approved by the instructor or if the student is able to document a valid reason for their absence (i.e. illness, death in family, automobile accident, the Dean of Students, etc.).

- 5) <u>Extra Point Chance (I)</u>: To celebrate Earth Day this year, the NRRM program will be hosting a series of events on April 22 (Tuesday, on-campus). All interested faculty, students and staff are invited to participate in the events. If you attend the events, you will receive one extra point (a sign-up sheet will be provided later).
- 6) Extra Point Chance (II) MU PROS Participation: The Marshall University Park and Recreation Organization for Students (MU PROS) was created to promote active involvement in park and recreation related events on campus and in the community. Students in this course may earn up to three percentage points of extra credit by participating in MUPROS meetings and events (0.5 points per meeting and 1.0 points per event).

Grade (undergraduate)

Lab Report (15 pts. $\times 2 = 30$ pts.) Lab Summary (8 pts. $\times 5 = 40$ pts.) Final Project Paper (10 pts.) Final Project Presentation (10 pts.) Attendance & Participation (10 pts.) **Total: 100 pts.**

Grade (graduate)

Lab Report (15 pts. each $\times 2 = 30$ pts.) Lab Summary (8 pts. each $\times 5 = 40$ pts.) Final Project Paper (10 pts.) Final Project Presentation (10 pts.) Article Review Paper (10 pts.) **Total: 100 pts.**

Grading Scale

100 - 93	А
92.9 - 85	В
84.9 – 77	С

76.9 – 70	D
69.9 – 0	F

Additional Policies and Expectations

- Class Materials can be found at MU-online (<u>http://www.marshall.edu/muonline</u>). The instructor will upload all lecture and class discussion files (pdf format) at MU-online in a timely manner. It is mandatory that students monitor the MU-online for updated class materials at least once a week.
- Assignments (lab report/summary and final project paper) are expected to be professionally presented. The instructor will provide instructions for the expected style of assignment as well as the <u>sample</u> of the assignment.
- 3) *Late Submissions* are strongly discouraged. Assignments not submitted to the instructor on the specified due date will be considered late. Late assignment will be accepted with a penalty of 25 percent for each day that the assignment is late. Exceptions to this policy will be made only for extraordinary circumstances that are cleared with the instructor ahead of time or with documentation when advance notice is not possible (Assignment placed in my campus mailbox or slid under my office door will not be accepted after the deadlines).
- 4) Classroom Etiquette: Students are expected to exhibit proper classroom etiquette. This means, among other things, that classroom discussions should be appropriate and respectful, cell phones should be turned off and put away at all times, newspapers and other non-class related reading materials should not be on desks, and students should not pack-up to leave until class has been dismissed. Failure to exhibit proper classroom behavior will affect your participation grade.
- 5) *Resources*: Students who find themselves in need of additional assistance are reminded that the instructor is available during office hours. Again, the instructor's office hours during the spring 2014 semester are as follows: T/R: 10:50 12:00 pm, W/F: 9:00 10:00am, 11:00 12:00 pm.
- 6) *Course Evaluation*: Mid-semester evaluation will be done by the instructor to identify students' suggestions on the course (i.e. pace and topic/subject of the course). Final student course evaluation will be conducted during the last two weeks of the semester in a manner that maintains the integrity of the process and the anonymity of evaluators (via online).

PLS 433/533 GIS/Remote Sensing in Natural Resources Management		
Data	Date Topic	Readings/
Date		Assignment
Jan. 15	Introduction: GIS/RS for Parks/Protected Areas/Natural	
	Resource Management	Bolstad Ch. 1.
	Lab #1: Map layout & Making trail map	
	Pre-classification Change Detection Analysis	Bolstad Ch. 6.
Jan. 22	Lab #2: Working with satellite dataset & NDVI change	Kim et al. (2014)
	detection analysis 1	Sader et al. (2003)
Jan. 29	Pre-classification Change Detection Analysis	Bolstad Ch. 6.
		Kim et al. (2014)
	<u>Lab #5</u> : NDVI change delection analysis 2 (continued)	Sader et al. (2003)
	Trail/Site Impact Analysis in National Park 1	Bolstad Ch. 9.
Feb. 05		Kim et al. (unpublished)
	<u>Lab #4</u> . Node and linkage effect of vegetation change	Lab 3 Report Due
	Trail/Site Impact Analysis in National Park 2 <u>Lab #5</u> : Vegetation impact comparison mechanism	Bolstad Ch. 9.
Feb. 12		Kim et al. (2012)
		Lab 4 Summary Due
	Trail/Site Impact Analysis in National Park 3	Bolstad Ch. 9.
Feb. 19		Kim et al. (2011)
	<u>Lab #0</u> . Multi-temporal change detection analysis	Lab 5 Summary Due
	Post-classification Change Detection Analysis	Bolstad Ch. 6.
Feb. 26	Lab #7: Vegetation diversity change detection analysis using	Kim et al. (unpublished)
	supervised classification	Lab 6 Summary Due
	Post classification Change Detection Analysis	Bolstad Ch. 6.
Mar. 05	Lab #8: Vegetation diversity change detection analysis using	Kim et al. (unpublished)
		Article Review Paper
	supervised classification II (continued)	Due (<u>Graduate Only</u>)
Mar. 12	Classification Accuracy Assessment	Bolstad Ch. 14.
	Lab #9: Accuracy assessment	Lab 8 Report Due
Mar. 19	No Class (Spring Break!)	
Mar. 26	Working With GPS	Bolstad Ch. 5.
	Lab #10: Trail mapping & editing (on campus)	Lab 9 Summary Due

Course Outline (Please note this is a tentative schedule and it may change upon class progress)

April 02	Presentation Preparation / Scheduling / Q & A	Lab 10 Summary Due
April 09	Guest Lecture I & Presentation Preparation	
April 16	Guest Lecture II & Presentation Preparation	
April 23	Student Presentation I (5 students)	
April 30	Student Presentation II (5 students)	Final Project Paper Due